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Figure S1 
 

 
Fig. S1 In vivo effects of haem-enriched diet (Study 2). After 14 days of experimental diet, 
impact on (a) faecal haem, (b) faecal TBARs, (c) urinary DHN-MA, (d) colonic 
myeloperoxidase activity, (e) IL-1β, and (f) IL-10 in colon mucosa. CON: control diet, HEM: 
haem-enriched diet. Values are presented as means ± SEM; n= 8. ***P<0.001, **P<0.01, 
*P<0.05 compared to CON by unpaired t-test.  
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Figure S2 
 

 
 
Fig. S2 Typical 1H-NMR spectra of faecal extracts from rats treated with CON (a), Ca (b), 
HEM (c) or HEM-Ca (d).  
Key: 1: bile acids (mixed), 2: caprylate, 3: butyrate, 4: leucine, 5: valine, 6: isoleucine, 7: 
propionate, 8: α-ketoisovalerate, 9: ethanol, 10: lactate, 11: alanine, 12: 5-aminovalerate, 13: 
acetate, 14: N-acetyl-groups*, 15: methionine, 16: glutamate, 17: succinate, 18: α-
ketoglutarate, 19: dimethylamine, 20: choline, 21: β-glucose, 22: sucrose, 23: xylose, 24: 
unknown compound (U2), 25: uracil, 26: tyrosine, 27: phenylalanine, 28: hypoxanthine, 29: 
unknown compound (U1), 30: uridine, 31: unknown compound (U3), 32: unknown compound 
(U4), 33: fumarate, 34: 3-(4-hydroxyphenyl)propionic acid, 35: methanol, 36: trimethylamine.  
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Figure S3 

  
Fig. S3 rCCA aiming at maximising the correlation between metabolomic data and 
physiological metadata. a Plotarrow representing the projection of each sample (individual rat) 
through an arrow from the metabolome subspace (the start of the arrow) to the metadata 
subspace (physiological traits indicated by the tip of the arrow) spanned by the two first 
components retained in the analysis. Length of the arrow indicates the proximity of data 
structuration between the two datasets. b Clustered Image Map (CIM) of the variables from the 
two datasets. The red and blue colours indicate regions where metabolites and metadata highly 
positively and negatively correlated, respectively. 
HO1: Haem Oxygenase1, GSTA4: glutathione S-transferase alpha 4, iKB: ikappaB, COX2: cyclooxygenase2, 
Cl5: claudin 5, IL10: IL10 in serum, MLCK: myosin light-chain kinase, JAMA: junctional adhesion molecule, 
DHNMA: urinary 1,4 dihydroxynonenal, Haem: haem in faecal water, TBARS: faecal thiobarbituric reactive 
substances, Permeability: Cr51 permeability, ZO1: tight junction protein 1, IntestinL: intestine length, 
Genotoxicity: DNA damage by comet assay, MPO: myeloperoxidase, GCLM: glutamate-cysteine ligase modifier, 
Food: food intake, Colon L: colon length, BodyW: body weight, CRP: C-reactive protein, LiverW: liver weight. 
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Figure S4  
 

 
  
Fig. S4 Histogram of the LDA scores computed for taxa that were found to be differentially 
abundant at between experimental conditions : a HEM vs. CON, b HEM_Ca vs. HEM. The 
magnitude of the LEfSe scores indicates the degree of consistency of the difference, only taxa 
with LDA scores higher than 3.5 and P<0.01 are displayed.  
Differences are represented in the colour of the most abundant class. 
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Figure S5 
 

 
 
 
Fig. S5 Relative abundance of detected faecal opportunistic pathogens in response to haem 
enriched diet. Besides E. fecalis abundance, all detected opportunistic pathogens are increased 
in haem-enriched diet (in bold). CON: control diet and HEM: haem-enriched diet.  
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Figure S6  

 
Fig. S6 Multivariate integrative analysis aiming at maximising the correlation between two (a) 
or three datasets (b-e) . a Plotarrow representing the projection of each sample (individual rat) through 
an arrow from the microbiota subspace corresponding to the 12 selected bacterial taxa (the start of the 
arrow) to the metadata subspace (physiological traits indicated by the tip of the arrow) spanned by the 
two first components retained in the analysis. b Matrix scatterplot on the 2 first components of each data 
set depicting the correlations between data sets. c Sample plot depicting the clustering of individuals 
according to diet into the space spanned by the two first components of each block. d Plotarrow 
representing the projection of each sample (individual rat) through the three subspaces (the start of the 
arrow indicates the centroid between all datasets and the tip of the arrows the location of each sample 
in each block). e Circos plot depicting the higher correlations (cut-off>0.58, component 1) between 
variables across the three data sets.  
Length of the arrow in a and d indicates the proximity of data structuration between the data sets.   
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Figure S7  
 

 
 
Fig. S7  Relative abundance of haem-exposed haem taxa in rats previously described as 
associated with consumption of (a) an animal-based diet in human [1], (b) meat in human [2]  
and (c) haem in mice [3]. Name of the taxa for each graph appeared in bold when in accordance 
with literature. 
CON: control diet and HEM: haem-enriched diet. 
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Figure S8  

 
 
Fig. S8 Relative abundance of haem-exposed bacterial taxa belonging to (a) previously 
identified CRC bacterial signatures in human as compared to healthy volunteers or (b) models 
of CRC in rodent.  
Comparison of bacterial relative abundances with these previously described in human were performed only if 
sufficient number of Genus/Family/Orders/Class/Phylum were detected in microbiome of the studied rats (Taxa 
belonging to Fusobacterium for example were not detected in this study, as previously seen in mice transplanted 
with human haem microbiota in the study of Baxter et al. [4]. Similarly, Akkermansia muciniphila as well as 
Campylobacter spp. or Streptococcus bovis were not detected in our study. 
Included studies for comparisons were performed on faeces [2,4–9] and comparisons were primarily based on the 
review from Borges-Canha et al. [10] that considered only consistent changes among human or animal studies.  
Name of the taxa for each graph appeared in bold when in accordance with literature.  
CON: control diet and HEM: haem-enriched diet. 
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Figure S9 
 

 
 
Fig. S9 Behaviour of mucus associated bacterial taxa in response to haem exposure. CON: 
control diet and HEM: haem-enriched diet. 
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